Interaction model of a farmer and a restaurant

Publié le : 14 October 2025
Écrit par : alice
Niveau de difficulté :

This system describes a farm and a restaurant belonging to a same project. Consequently, they function in full cooperation.

Description of the system : 

de Lapparent, A., Martin, S. & Sabatier, R. Using System Modularity to Simplify Viability Studies: An Application to a Farm-Restaurant Interaction. Environ Model Assess (2024). https://doi.org/10.1007/s10666-024-10014-w

The object computed is a viability kernel. The model is discrete in states, controls and time.

The computation takes a moment (4088s on my computer), be patient...

 

Model

States and controls

State variables

Notation Description Number of points Maximal value Minimal value
$x_1$ Cumulative cash flow (€) 41 100 000 0
$x_2$ Restaurant attractivity coefficient (no unit) 31 1 0
$x_3$ General Index for Soil Quality 51 1 0

upper limit of $x_1$ can be relaxed.


Control variables

Notation Description Number of points Maximal value Minimal value
$u_1$ Choice of N-crops rotation 126 126 1
$u_2$ Surface dedicated to market gardening (in ha) 21 2 0.05
$u_3$ Price of a meal (in €) 21 15 2

Dynamics

Overall dynamics are:

\begin{equation}
   \mathcal{S}_U
   \begin{cases}
   x_{1}^{t+1} = x_{1}^t + G(x_{2}^t,u_{3}^t,R(x_3^t,u_1^t,u_2^t)) - E(u_{1}^t,u_{2}^t)\\
   x_{2}^{t+1} = \alpha(x_{2}^t,u_{3}^t,R(x_3^t,u_1^t,u_2^t))\\
   x_{3}^{t+1} = \Phi (x_{3}^t ,u_{1}^t,u_{2}^t) \\
   \end{cases}
\end{equation}

 

with the following functions:

Notation

Description

$R(x_3,u_1,u_2)$ Agricultural production
$G(x_2,u_3,R(x_3,u_1,u_2))$ Restaurant economic outcome
$\alpha(x_2,u_3,R(x_3,u_1,u_2))$ Transition function for the restaurant attractivity
$\Phi(x_3,u_1,u_2)$ Transition function for the GISQ
$E(u_1,u_2)$ Cost of agricultural production

Some dynamics require to use grid parameters. Consequently, a function has been implemented into the source file to get these values.

 

Constraints

There are two cconstraints in this system: the global system has to be profitable and a minimal soil quality has to be preserved in order to address sustainability concerns. These constraints take the form of thresholds on the cumulative cash flow ($x_{1} \geq x_{1min}$) and on soil quality ($x_3 \geq x_{3min}$), respectively. In other words, $(x_1^t,x_2^t,x_3^t)$ must remain in $K$ for all $t\in \mathbb{N}$ with : 
\begin{equation}
K:=\{(x_1,x_2,x_3)\in \mathbb{R}^+\times [0;1]^2 \; |\; x_1\geq x_{1min} \text{ and }x_3\geq x_{3min}\}.
\label{K}
\end{equation}

 

 

Implementation parameters

Time horizon

The time horizon (for trajectory computations) is 20 years.


Algorithm parameters

Default parameters are used.


System parameters

We used the parameters for a low-hypotheses computation.

   "SYSTEM_PARAMETERS": {
       "DYNAMICS_TYPE": 2,
       "DYN_BOUND": 1,
       "DYN_BOUND_COMPUTE_METHOD": 2,
       "IS_TIMESTEP_GLOBAL": 0,
       "LIPSCHITZ_CONSTANT": 1,
       "LIPSCHITZ_CONSTANT_COMPUTE_METHOD": 2,
       "TIME_DISCRETIZATION_SCHEME": 4
   }
Viability kernel

Viability kernel computed using ViabLab