Interaction model of a farmer and a restaurant

This system describes a farm and a restaurant belonging to a same project. Consequently, they function in full cooperation.

Description of the system : https://doi.org/10.1007/s10666-024-10014-w

The object computed is a viability kernel. The model is discrete in states, controls and time.

The computation takes a moment (4088s on my computer), be patient...
 

Model

States and controls

State variables

 

 

Notation

Description

Number of points

Maximal value

Minimal value

$x_1$Cumulative cash flow (€)41100 0000
$x_2$Restaurant attractivity coefficient (no unit)3110
$x_3$General Index for Soil Quality5110

 

upper limit of $x_1$ can be relaxed.


Control variables

 

Notation

DescriptionNumber of pointsMaximal valueMinimal value

$u_1$

Choice of $N$-crops rotation

126

126

1

$u_2$

Surface dedicated to market gardening (in ha)

21

2

0.05

$u_3$

Price of a meal (in €)

21

15

2

 

 

Dynamics

Notation

Description

$R(x_3,u_1,u_2)$Agricultural production
$G(x_2,u_3,R(x_3,u_1,u_2))$Restaurant economic outcome
$\alpha(x_2,u_3,R(x_3,u_1,u_2))$Transition function for the restaurant attractivity
$\Phi(x_3,u_1,u_2)$Transition function for the GISQ
$E(u_1,u_2)$Cost of agricultural production

cf article for further details

Some dynamics require to use grid parameters. Consequently, a function has been implemented into the source file to get these values.

 

Constraints

 

Implementation parameters

Time horizon

The time horizon (for trajectory computations) is 20 years.


Algorithm parameters

Default parameters are used.


System parameters

We used the parameters for a low-hypotheses computation.

   "SYSTEM_PARAMETERS": {
       "DYNAMICS_TYPE": 2,
       "DYN_BOUND": 1,
       "DYN_BOUND_COMPUTE_METHOD": 2,
       "IS_TIMESTEP_GLOBAL": 0,
       "LIPSCHITZ_CONSTANT": 1,
       "LIPSCHITZ_CONSTANT_COMPUTE_METHOD": 2,
       "TIME_DISCRETIZATION_SCHEME": 4
   }